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ABSTRACT

The energy performance of a building is, apart from installed systems and building usage, primarily determined by the thermal
characteristics of the building envelope. An important distinction needs to be made between the theoretical building energy perfor-
mance as calculated in the design phase and its actual as-built performance. Several studies have shown that these can differ
rather significantly.

As a first step in bridging this energy performance gap, this paper investigates the possibility of characterizing the as-built
thermal performance of building envelopes using dynamic data analysis of appropriate experiments. Essentially, the investigated
building is modeled as a simplified thermal system. The parameters governing the workings of the thermal system are estimated
by fitting it to measured thermal performance data of the building, by means of maximum likelihood estimation.

A scale model of a building serves as a case study. Identical measurement campaigns are simulated in winter and summer.
Models of increasing complexity are fitted to the simulated measurement data of both campaigns. The fitted models are evaluated
and compared on the basis of their log-likelihood, output residuals, and corresponding auto-correlation function and the cumu-
lated periodogram. Using likelihood ratio tests, it is assessed whether models of larger complexity perform significantly better
than smaller models. The best-performing models of different model orders are cross-validated. Hence, a model order tailored

to the investigated fabric, the imposed experiment, and the weather conditions is determined.

INTRODUCTION

Background

The energy performance of a building is essentially deter-
mined by the thermal characteristics of the building fabric, the
installed services, and the building usage. As the latter is not
easily predicted nor controlled, the first two are decisive in
achieving the envisaged building energy performance, for
both newly built and renovated buildings. An important
distinction needs to be made here between the theoretical
building fabric thermal performance as calculated in the
design phase and its actual as-built performance. Several stud-
ies have shown that these can differ rather significantly (Hens
etal. 2007; Bell etal. 2010; Lowe et al. 2007). This difference,
among others, can be attributed to the applied materials differ-

ing from the designated ones, poor detailing and/or workman-
ship issues, and physical phenomena such as thermal bridging,
wind washing, and air looping. Hence, the thermal perfor-
mance characterization of a building envelope, as investigated
in this paper, constitutes an important step in bridging the gap
between the designed and the as-built energy performance of
buildings.

Buildings essentially constitute dynamic thermal
systems, which can be modeled as a series of thermal nodes
(e.g.,an indoor air temperature node or a node in the capacitive
building fabric, among others). Such nodes, often referred to
as states, bear a certain capacity (C) to store or release heat and
are interlinked through thermal resistances (R). The system
dynamics are determined by its time constants (e.g., how fast
the indoor air temperature responds when the outdoor air
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temperature rises with a given step), which directly relate to
the heat capacities associated with the thermal nodes and the
thermal resistances between them. Depending on the investi-
gated building and the way in which it is excited (e.g., by a
specifically designed experiment), its dynamics will be
marked by one or more time constants. The aim of this paper
is to evaluate the suitability of certain simplified thermal
models to grasp the building dynamics, based on the analysis
of experiments performed on the building of interest. In a next
step, these models can be used to characterize the physical
parameters of the building (R and C, among others) or simulate
the building behavior, given known boundary conditions or
inputs.

The analysis methodology used in this paper is based on
a data-driven identification of models with physical relevance,
referred to as grey-box modeling. Essentially, this holds the
middle between white-box modeling, where the thermal
behavior is assumed to be known and deterministic, and black-
box modeling, in which prior physical knowledge is discarded
and the main aim is to describe the output of the thermal
system (e.g., indoor air temperature) as a function of the
measured input (e.g., outdoor air temperature, solar radiation,
etc.).

A grey-box model mathematically describes the investi-
gated building as a simplified thermal system, based on a phys-
ical interpretation of that building. The description consists of
a system of continuous-time stochastic differential equations
and discrete-time measurement equations. As such, the model
comprises a certain configuration of parameters (thermal
resistances, heat capacities, solar apertures, etc.) that govern
the links between temperature nodes in a thermal system. The
unknown parameters are then estimated on the basis of infor-
mation that is embedded in the measurement data, using maxi-
mum likelihood estimation (Kristensen and Madsen 2003).
The obtained parameter values serve to maximize the proba-
bility that, assuming respective models, the measured
response is actually observed.

Instead of applying the methodology on a real building, a
very simple, small scale model of a building, the Knauf Insu-
lation Test Box (KI Test Box) is used as a case study. This box
was designed as an object of study for the Round Robin Exper-
iment organized in the framework of the currently ongoing
IEA ECBCS Annex 58 project (Roels 2011). The KI Test Box
allows for great control of the experiment conditions, facili-
tating the investigation of the reliability and practicality of the
applied data analysis methods.

Instead of acquiring measurement data by performing
real experiments, different measurement campaigns are simu-
lated on the KI Test Box. Experiments are simulated during a
winter month (January 2011) and a summer month (July
2011). Both experiments excite the indoor environment of the
box using an identical predetermined heating power that is
made to exhibit the characteristics of a pseudo random binary
signal (PRBS). Hence, the only difference between winter and
summer experiments lies in the particular weather conditions.

Grey-box models of increasing complexity are fitted to
the simulated measurement data. The performance of the fitted
models is compared using statistical methods. More specifi-
cally, the model log-likelihoods are compared, likelihood ratio
tests (Thyregod and Madsen 2006) are used to assess whether
a more complex model performs significantly better than a
smaller (less complex) sub-model (Bacher and Madsen 2011),
the residuals and corresponding autocorrelation functions
(ACFs) are plotted to investigate how well the models are able
to predict the response of the building (referred to as the states)
based on the imposed boundary conditions (referred to as the
inputs), and finally, the cumulated periodogram serves to test
whether the residuals exhibit white noise behavior. A white
noise signal represents a sequence of mutually uncorrelated
identically distributed random variables with zero mean and
constant variance.

Outline

The investigated building scale model and the simulated
measurement campaigns are discussed in the section “Simu-
lated Measurement Campaigns.” In a following section, the
candidate grey-box models are described and the statistical
methods to select the most appropriate one are introduced. In
the section “Identification of Simulated Box,” these models
are fitted to the simulated measurement data in winter and
summer. A forward selection strategy reveals the most suitable
model based on the performance. The best-performing models
of consecutive orders are cross-validated. Conclusions are
drawn in the last section.

SIMULATED MEASUREMENT CAMPAIGNS

Knauf Insulation Test Box

Instead of applying the methodology on real experiments
applied on a real building, a small scale model of a building,
the KI Test Box (Figure 1) of IEA ECBCS Annex 58 (Roels
2011), is investigated. The investigated test box has a cubic
form, with exterior dimensions of 120 x 120 x 120 cm?’. The
floor, roof, and wall components are all identical and exhibit
a thickness of 12 cm, leaving an inner volume of 96 x 96 x 96
cm’. One wall contains a window component with dimensions
60 x 60 cm?. The fixed window frame has the same thickness
as the other fagade elements. A structure is provided around
the box that allows it to remain free from the thermal influence
of the ground. Hence, the box can be considered as floating in
free air.

As such, the test box allows for rather simple, well-
controlled experiments to investigate different scenarios and
to determine the influence of different aspects that come to
play in the thermal behavior of buildings.

Simulation of Test Box

Instead of acquiring measurement data by performing real
experiments, different measurement campaigns are simulated,
using Physibel software VOLTRA 7.0w (Physibel 2011).
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Figure 1 Investigated test box: (a) three-dimensional picture of simulated test box and (b) plan and section of simulated test

box. The numbered nodes, T;, T,,

section Ty

..., Ty, refer to the inside (even numbers) and outside (odd numbers) surface

temperatures (in the middle of the surface). T; indicates the air temperature inside the box. ®y, represents the heating
power injected into the indoor environment of the box.

Table 1 shows the boundary conditions assumed as a basis
for the simulations. The simulation time step is 1 min. The
thermal conductivity, density, and specific heat of all materials
are assumed constant. Inside and outside surface heat fluxes
are decoupled in a convective and radiative component. Addi-
tionally, the radiative heat exchange to the sky and environ-
ment are decoupled. The south-oriented window is modeled as
a gas-filled double-glazed window. Ventilation heat losses
have not been incorporated in the simulations. The box fabric
is assumed perfectly airtight. Hence, this study focuses only
on the characterization of the test box with respect to trans-
mission heat losses.

Simulated Experimental Conditions

The test box is simulated to be subjected to measurement
campaigns in January 2011 and July 2011. Figure 2 shows the
applied heating power signal, the resulting indoor air temper-
atures, indoor and outdoor surface temperatures, and govern-
ing weather conditions (for Limelette, Belgium) during both
campaigns. Assuming Equation 1 holds, the sky temperature
T, is calculated from infrared radiation measurements on a
horizontal surface g;,,, (with ¢ as the Stefan-Boltzmann
constant).

T _ qir,hor 14
sky — o

As suggested by Rabl (1988), a more sensible assessment
of the solar apertures can be obtained when direct and diffuse
solar radiation are separated for each of the building’s window
orientations. The global and diffuse solar radiation on a hori-
zontal surface are available as measured input. In combination
with accurate knowledge of the sun position (Reda and
Andreas 2008) throughout the experiment, all five projections
(horizontal, north, east, south, and west) of the direct solar

(M

radiation in all orientations are calculated. In what follows,
dsy,+ denotes the global solar radiation projection perpendic-
ular to orientation * (e.g., south).

Applied Excitation Signal

During both measurement campaigns, the KI Test Box is
heated with a predetermined power corresponding to a PRBS.
The PRBS properties of interest are that it is uncorrelated with
the weather conditions and has an autocorrelation that approx-
imates that of white noise (Godfrey 1980).

The PRBS effectively shifts between two levels: full
power and no power. The time period A indicates the shortest
time step at which the signal is maintained at a certain level.
As suggested by Madsen and Schultz (1993), A is chosen to
closely relate to the smallest expected time constant of the
investigated box, and the signal order n» may be selected so that
NA = (2" - 1)\ closely relates to the largest time constant of
the box.

The system is excited using two consecutive PRBSs. The
first part is designed in such a way that the system is excited
around time constants of 2 h (1) and 30 h (VA). This signal has
periods at one level between 2 h and 8 h (n)). The second part
has a A of 4 h and nA of 16 h. Hence, the system is excited
around time constants of 4 h and 60 h. Both PRBSs are
repeated 4 times, resulting in a total experiment duration of
15 days. The parameters governing the heating power signal
generation are collected in Table 2. The resulting signal is
incorporated in Figure 2a and is identical for both January and
July experiments.

Perturbed Simulated Measurement Data

In order to yield the simulated measurement data as more
representative, the data are perturbed by adding random noise
proportional to the original data (up to +1%). This effectively

Thermal Performance of the Exterior Envelopes of Whole Buildings XII International Conference 3



Table 1. Assumed Indoor and Outdoor Boundary Conditions During Simulations

Outdoor Boundary Conditions

Gose = hoe(0,—B,5) Gose External surface convective heat flux
Variable convective heat transfer coefficient
R = 5.85 v32 (leeward side)
=7.18 v’ (windward side)
0, Ambient air temperature
0, External surface temperature
Qosy = EGF(T,* — T, rad’) Gosr External surface radiative heat flux to environment
Gesnsky = 50Tty (Ts" - TY]C’"’“‘J4) Gesrsky External surface radiative heat flux to sky
& External surface emissivity = 0.9
c Stefan-Boltzmann constant
T Absolute external surface temperature
T, ad Average radiative temperature environment
F, Environment view factor
T, rad Average radiative temperature sky
Foy Sky view factor
Gsolar = OE Asolar Solar irradiation
o Solar absorption factor of external surface = 0.97
E Solar radiation on surfaces, cfr. Muneer (1989)

st

Indoor Boundary Conditions

Qise = ;i (8;— 0;) Qise Internal surface convective heat flux

W Variable convective heat transfer coefficient
ic =1.46 (6,— 0;)"

0, Internal air temperature (assumed uniform)

0;, Internal surface temperature

iy = E0(T: 4 — T,-V,ad“) Qisr Internal surface radiative heat flux

& Internal surface emissivity = 0.9

G Stefan-Boltzmann constant

T; Absolute averaged internal surface temperature

T ad Average radiative temperature interior room

simulates measurement noise, frequently specified as a
percentage of the measured quantity.

SIMPLIFIED MODELING OF THE BUILDING
ENVELOPE THERMAL PERFORMANCE

Lumped State-Space Modeling

As mentioned previously, the investigated building is
described by a series of simplified thermal systems of varying
complexity, referred to as grey-box models. All of the candi-
date models considered in this paper are linear time-invariant
and can be mathematically described as a system of continu-

ous-time stochastic differential equations (Equation 2) and
discrete-time measurement equations (Equation 3):

where
T

U

dT = (AT + BU)dt + do(t) @)

Y, = CT, +DU, +¢, 3)

state vector (response of the KI Test Box, e.g.,
indoor air temperature)

input vector (e.g., outdoor air temperature, solar
radiation, heating power)
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Figure 2 Simulated measurement campaigns in January 2011 (left) and July 2011 (right): (a) simulated indoor air
temperature, composite PRBS as heating power, and indoor surface temperatures; (b) measured ambient air
temperature, calculated sky temperature, and simulated exterior surface temperatures; (c) measured global solar
radiation on horizontal surface and calculated global solar radiation projections; and (d) measured wind speed and
direction.
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A,B = parameter matricesthat govern the dynamics ofthe
states and how inputs alter the system,

respectively.

Hence, A and B consist of physical parameters that serve to
characterize the heat dynamics of the test box and are of partic-
ular interest here.

In this study, depending on the complexity of the consid-
ered model, the input vector comprises up to four variables:
outdoor air temperature 7, heating power @, solar radiation
projection gy, », and sky temperature Ty,

0= [, by g 7] @

In all of the considered models, the indoor air temperature
T;1is considered to be the sole output or response of the system.
The candidate models considered in this paper, of increasing
complexity, are described in more detail in the following
subsections on model Ti, model TiTe, and model TiTeiTea.

Model Ti

As illustrated in Figure 3a and described mathematically in
Equations 57, the indoor air temperature 7; [K] is considered
the sole state of the system. The outdoor ambient temperature

Table 2. Parameters of PRBS Generation
# Name n A N nk NA
4 PRBSI 4 2h 15 8h 30h
4 PRBS2 4 4h 15 12h 60 h
qsw' qsw.‘
Ta
Rra
o, W

——————————————————
(@)

Figure 3  Diagrams of the assumed thermal models Ti (a) and TiTe (b). System states (indicated in blue): T; [K] =

T, (Equations 5-7), the heating power @, (Equations 6-7), and
the solar radiation gy, (Equation 7) are added consecutively
as inputs to the system. The identified heat capacity C; will,
aside from the limited heat capacity associated with the indoor
air, include the heat capacity of the building fabric that is effec-
tively excited during the experiment. R;, [K/W] represents the
thermal resistance between indoor and outdoor air (Equations
5-7). The fraction of solar radiation that actually constitutes a
heat input to the indoor air of the KI Test Box is denoted A4,
[m?K] (Equation 7). In this case, as illustrated in Figure 3a, it
includes the fraction entering through the transparent part 4,
and opaque part A4y, ,

Model Ti.1

dT, = (CR (T, _T))dt+dco (1) 5)
Model Ti.2

at, = [~ 1+ 2lar v do o) (6)

' CiRia ¢ ' C; l
Model Ti.3
A
dT. = 1 . %+M— dt +do ()
' CiRia ¢ l Ci Cl

(7
Model TiTe

To more accurately take into account the dynamic
response of the fabric, second-order models are suggested in
Equations 8—10. Essentially, as depicted in Figure 3b, an addi-

o

——————————————————————————
(b)

indoor air

temperature state; T, [K] = envelope temperature state. Inputs (black): T, [K] = outdoor air temperature; Qgy, « [W/
m?] = global solar radiation projection perpendicular to orientation *; &, [W] = heating power. Estimated
parameters (rved): C; and C, [J/(kg'K)] = heat capacity associated with thermal nodes T; and T, respectively;

R Re; and R, [K/W] = thermal resistance between T;—T,, T;-T,

resistance of window; Ay, and A,
and opaque parts, respectively.

SW,0

o and T,—T,, respectively; Ry, [K/W] = thermal

[m?-K] = fraction of solar radiation entering through transparent window area
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tional state 7, [K] is considered between thermal nodes 7, and

i, comprising the larger fraction C, of the total heat capacity
C; + C, effectively charged or discharged during the experi-
ment. R,; and R,, [K/W] represent the thermal resistances
between T, — T, and T, — T, respectively.

Model TiTe.1

1 oy,
dT. = ( (T —T.)+—Jdt+d(o.(t)
i CiRei e i C. i
1 1
JT =( (T ~T)+ (T._T))dem (1)
¢ CeRea ¢ ¢ CeRez' ' ¢ ¢
(8)
Model TiTe.2
A
dT; = ( L7, 1)+ b, }dem do,(t)
CiR, ¢ ¢,
L v 1)+ (1,-1,
CeRea CeRei
dr, = di +do (1)
4 ((1- p)ASW’ z)qSW, « Asw, osw, *
Ce
)

As a base case (Equation 8), model TiTe.l does not
consider solar radiation ¢y, « as an input. Figure 3b and Equa-
tion 9 illustrate how the influence of the latter is modeled in
model TiTe.2. A fraction p of the solar radiation entering the
box through the south-facing window (4,,,,; g, +) is considered
to affect the indoor temperature state 7; directly. The other frac-
tion 1 — p is expected to consequently strike the fabric compo-
nents and influence the newly considered envelope state 7. In
addition, a small fraction Aj,,, , of solar radiation is expected to
enter the state 7, through the opaque envelope surfaces.

To differentiate between the transparent and opaque
components, the indoor air can be coupled directly with the
ambient air (via R,,), without any associated heat capacity
(Equation 10). This can be reasonably assumed due to the fact
that the heat capacity of the window is likely to be negligible
in comparison with the opaque fabric parts (Rabl 1988).

Model TiTe.3
1 1
(T,-T,)+——(T,~T,)
CiRei ¢ ' CiRw ¢ !
dT; = di +do (1)
+ % 4 pAsw, tqsw, *
C, C,
Lo (r,-1)+ ——(1,-1,)
CeRea CeRei
dT, = di +do (1)

N (1= p)ASW, z)qSW, s Asw, 09 sw, *
C

e

(10)

Model TiTeiTea

In a last step, a more sophisticated third-order model is
considered by assuming two states 7,; and 7,,, between thermal
nodes 7, and T}, as illustrated in Figure 4. This assumption is
likely to be valid in many practical cases, e.g., when consid-
ering a dwelling with insulated walls, where the heat capacity
is concentrated at either side of a light insulating layer.

C,;and C,, [J/(kg'K)] represent the heat capacities asso-
ciated with 7,; and 7,,. R,;, R,, and R,, [K/W] represent the
thermal resistances between the respective thermal nodes T},
T,, T,, and T,. The fraction 1 — p of the solar radiation that
enters the box through the window (4, ¢y, ) is assumed to
affect the indoor fabric state 7;, whereas the outdoor fabric
state T, is independently affected (4,9, ) by solar radia-
tion striking the outside surface of the fabric.

With T, representing a state at the outer layers of the
fabric, it becomes sensible to additionally inject this state with
radiative heat exchange to the sky.

Hence, two three-order models are considered in the iden-
tification, only differing in the state equation for 7,,. Model
TiTeiTea.1 is described by Equations 11-12. Model TiTe-
iTea.2 is governed by Equation 11 and the modified 7, state
equation in Equation 13, including the influence of longwave
radiative heat exchange to the sky, governed by the radiative
heat transfer coefficient f [W/K].

Model TiTeiTea
A
dT, = (L(Tei_ T+, M}h +do, (1)
CiRei Ci Ci
AT CeiRe CeiRei di+d (t)
.= +do .
¢ L APy ) “
Cei
(11)
Model TiTeiTea.1l
1
T -T
CeaRea( ¢ ea)
dT , = dt+do, (t
- 1 T T ASW7 o9 sw, * ea( )
to R e et e
ea e ea
(12)
Model TiTeiTea.2
1
T -T
CeaRea( ¢ ea)
dT _ 1 T T Asw, oqsw, * d d
ea — + CeaRe( ei ea) + —Cea— I+ wea(t)
/
+ =Ty, - T,,)
Cea sky ea
(13)
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Figure 4 Diagrams of model TileiTea: (a) overview of the considered heat dynamics and (b) detailed view of considered

temperature states and assumed heat dynamics in the opaque fabric components. System states (indicated in blue):
T, [K] = indoor air temperature state; T, [K] = inner envelope temperature state; T,, [K] = outer envelope
temperature state. Inputs (black): T, [K] = outdoor air temperature; Qg « [ W/m’] = global solar radiation projection
perpendicular to orientation *; &y [W] = heating power; Ty [K] = sky temperature. Estimated parameters (red):
C, C,;, and C, [J/(kg'K)] = heat capacity associated with thermal nodes T;, T, and T, respectively; R, R, and
R., = thermal resistance between T, — T, T, — T, and T, — T, respectively; R, [K/W] = thermal resistance of
window; Ag,,and A, , [m*K] = fraction of solar radiation entering through transparent window area and opaque
parts, respectively, p [dimensionless] = fraction of solar radiation affecting T,; f [W/K] = radiative heat transfer

coefficient governing radiative heat exchange with sky.

Model Selection Using Statistical Tests

The main aim of the modeling task is to retain a compre-
hensible model that effectively describes the thermal behavior
of the investigated building in all its frequency parts.

The log-likelihood value associated with a certain candi-
date model (and given a certain data set) refers to the proba-
bility that the model actually has the observed response of the
real system as a result. Evidently, the observed measurement
data is more likely to result from well-performing models than
from models of lower performance. To evaluate the descrip-
tiveness of a certain model (alternative model) compared to
that of a sub-model (null model), the likelihood ratio test is
used. In addition to considering the log-likelihood values of
respective models, it takes into account the number of esti-
mated parameters.

The residuals constitute the difference between the
modeled response and the actual measured response. Hence,
the residuals associated with a suitable candidate thermal
model should ideally show white noise behavior. A white
noise signal represents a sequence of mutually uncorrelated,
identically distributed random variables with zero mean and
constant variance.

In a periodogram, the signal energy is decomposed into
contributions relating to different frequencies. In the case of
white noise, the residual periodogram should ideally vary
around some constant. A cumulated periodogram plots the

accumulation of a signal’s energy contributions, hence depict-
ing in which frequency range the model possibly tends to
misrepresent the true thermal system’s dynamic response. As
the cumulated periodogram of theoretical white noise is a
given, it offers a valuable tool to identify residual whiteness.

IDENTIFICATION OF SIMULATED BOX

In this section, the full set of identified models is
discussed. The system identification is performed using
CTSM-R, developed at DTU Informatics (DTU 2013). As a
basis for the parameter estimation, the simulated measurement
data are aggregated to 15 min averages. Tables 3, 4, and 5
collect the log-likelihoods for models Ti, TiTe, and TiTeiTea,
respectively. The model complexity is gradually built up, with
the final aim of obtaining a model of physical relevance, which
has a complexity adapted to the investigated building and the
data-embedded information.

Tables 3, 4, and 5 include p-values resulting from likeli-
hood ratio tests. Here, the sub-model of lower complexity
(lower model order or same model order with lower number of
estimated parameters) that was seen to be most suitable in a
previous step is assumed to be the null model, whereas the
model to be evaluated is seen as the alternative. Hence, using
a forward selection strategy, the most suitable model is
retained from the set of candidate models defined in the previ-
ous section of this paper.
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Table 3. Log-Likelihoods, Ti Models

Ti.l p-value Ti.2 p-value Ti.3

#

Parame- 4 5 6

ters

January 2048 <107 | 2783 1 2783

July 1487  <107'° | 1867 1 1866
Table 4. Log-Likelihoods, TiTe Models

p-value TiTe.l p-value TiTe.2 p-value TiTe.3

#

Param- 9 12 13
eters

January <107'® 2965 0475 2966  0.742 2966
July <107'% 1981 <107'° 2049 1 2047

Table 5. Log-Likelihoods, TiTeiTea Models
p-value  TiTeiTea.l1  p-value TiTeiTea.2
#
Parameters 16 17
January 0.845 2966 7.185e-12 2999
July 1.556e-12 2080 0.024 2082

For each model order (models Ti, TiTe, TiTeiTea), the
best-performing models are indicated in grey in Tables 3, 4,
and 5. The associated residuals and corresponding ACFs, both
for winter and summer measurement campaigns, are shown in
Figure 5. Figure 6 shows the log-likelihoods, and finally,
Figure 7 depicts the respective cumulated periodograms of all
considered candidate models.

Model Ti

Table 3 shows the log-likelihoods of models Ti.1, Ti.2,
and Ti.3 and the p-values resulting from the likelihood ratio
test statistic.

It is evident that the addition of the heating power signal
@, as an input (models Ti.2 and Ti.3) greatly increases the log-
likelihood of the model. As seen in Figure 6, this represents the
most important leap forward in the case of this model perfor-
mance indicator. At the same time, the cumulative periodo-
gram (Figure 7) shows that an important step is taken toward
residual whiteness.

The addition of solar radiation as an input (model Ti.3),
however, does not seem to yield an important improvement to
the model fit. Intuitively, this seems plausible for the winter
experiment, with little associated solar radiation. It is,
however, confirmed by the results relating to the summer
experiment. It is important to note that the global solar radia-
tion perpendicular to a south-oriented vertical surface is

selected as the sole solar radiation projection gy, «, serving as
an input to the current and higher-order models.

The ACF of model Ti.2 shows a certain diurnal wave
pattern for both winter and, above all, summer experiments. In
the latter case, the peaks in the ACF are also clearly seen to
cross the 5% confidence bands. Hence, model Ti.2 inade-
quately describes the output of the system. The wavy pattern
and the important peaks indeed reveal that the model output 7;
is partly dependent on earlier values of itself, whereas the
model should explain the output as a function of the inputs and
other eventual system states.

Model TiTe

As evident from the log-likelihoods and the p-value test
statistics collected in Table 4 and plotted in Figure 6, the model
description is greatly improved when extended by a capacitive
thermal node between 7, and 7. From the ACF (Figure 5) and
the cumulated periodogram (Figure 7), the residuals are shown
to exhibit white noise behavior for both winter and summer
measurements. Hence, the model is able to adequately
describe the investigated system in all its frequency compo-
nents.

From the analysis of models Ti, it was seen that solar radi-
ation does not necessarily represent a significant heat input
when modeling the indoor temperature of the investigated KI
Test Box. This is confirmed here for the winter experiments
(model TiTe.2 vs. model TiTe.1). On the other hand, for the
July experiment, g, » does serve as an important input to accu-
rately describe the KI Test Box response. Hence, in the latter
case, the most suitable model is model TiTe.2, whereas for the
winter experiment model TiTe.1 represents the best option in
the class of second-order candidate models.

For both measurement campaigns, modeling the transpar-
ent window component separately (model TiTe.3,
Equation 10) does not yield a significant improvement.
Hence, the low-capacitive window is no longer distinguished
in models TiTeiTea.

Inspecting the ACF, the diurnal wave pattern seems to
persist and become slightly more apparent in the case of the
January experiment, whereas in the case of the July experi-
ment it is seen to have been completely disentangled.

Model TiTeiTea

At first sight, the log-likelihoods of models TiTe and
TiTeiTea (Figure 6, Tables 4 and 5) seem to suggest that the
second-order models (models TiTe) already describe the ther-
mal system with sufficient accuracy. However, the likelihood
ratio test results in Table 5 clearly show that by adding another
capacitive thermal node between 7, and 7; a significant
improvement of the model is attained. Especially in the case of
the summer experiment (models TiTe.2 to TiTeiTea.l and
TiTeiTea.1 to TiTeiTea.2), but the improvement from models
TiTe.1 to TiTeiTea.2 in the case of the winter experiment is
also seen to be significant.

Thermal Performance of the Exterior Envelopes of Whole Buildings XII International Conference 9
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blue lines indicate a 5% confidence band.
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In the case of the experiment in January, the model
improvement TiTe.1 to TiTeiTea.l is proven not to be signif-
icant. However, skipping a step and going from TiTe.l to
TiTeiTea.2 does prove to be a step forward in the modeling
task (p-value: 7.185e-12). As expected from the outset, look-
ing at the sky temperature time series in Figure 2b, the long-
wave radiative heat exchange with the sky (the additional
term in Equation 13) is seen to have an important influence on
the KI Test Box behavior. This is confirmed by the log-like-
lihood of model TiTeiTea.2 and the likelihood ratio tests with
TiTe.1 (January) and TiTe.2 (July) as null models and TiTe-
iTea.2 (January and July) as the alternative model (Table 5).

Cross-Validation of Identified Models

An important distinction needs to be made between the
mere characterization of the building dynamics, the character-

ization of the thermal performance (e.g., R and C) of buildings,
and the model-based prediction of its response to certain
inputs or imposed boundary conditions. In this section, the
predictive performance of the identified models is tested by
simulating the KI Test Box response in another period than the
period over which the model was trained—i.e., the models are
cross-validated.

The root mean square errors plotted in Figures 8¢ and 8f
confirm the third-order models perform best. Additionally, it
is seen that the higher-order models identified on the basis of
the summer experiment outperform the ones identified on the
basis of the winter experiment when it comes to prediction.
This is contrary to what might be expected from the log-like-
lihoods discussed previously. As illustrated by Figures 8b
and 8d, the models trained using the January data set, although
grasping the KI Test Box dynamics, have not learned to prop-
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erly cope with the heat input to the indoor environment due to
solar radiation. This is likely to be attributed to both the limited
window surface of the KI Test Box and the fact that the solar
irradiance is rather low during the winter experiment. The
actual solar gain is seen to be underestimated, which is
revealed by the steady overall increase of the absolute residual
values with simulation time, as well as the modest reductions
followed by steep rises in the absolute residual values during
each day with considerable solar radiation.

CONCLUSIONS

The aim of this research was to investigate the ability to
identify the thermal dynamics of buildings using grey-box

12

modeling. In this framework, simplified thermal dynamic
models were defined based on prior physical knowledge.
These models were consecutively fitted to simulated data sets
acquired from simulated experiments performed on a simu-
lated small scale model of a building, the KI Test Box of [EA
ECBCS Annex 58 (Roels 2011). The performance of the fitted
models was compared using well-known statistical tests. The
identified thermal dynamic models can be used to characterize
the actual thermal performance of buildings and to simulate its
response to boundary conditions to which it might be subdued.

In general, it is seen to be crucial to inspect both the log-
likelihoods and the likelihood ratio test when judging whether
an alternative (more complex) model actually performs better.
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The main aim of the modeling task is to obtain a model with
associated residuals exhibiting white noise characteristics.
Residual whiteness becomes apparent in the auto-correlation
function (ACF) plot and the cumulated periodograms.

The order of the candidate models found to be most suit-
able depends on the perceivable or apparent time constants of
the investigated building. In other words, the time constants
associated with the model reflect the accessible heat capacity
that is effectively excited during the experiment. Whereas the
accessibility of the thermal mass is solely determined by the
composition of the building fabric, the effectively charged/
discharged part additionally depends on the imposed experi-
ment (7}, @) and the outside weather conditions (7, and g, «,
among others).

The simulated measurement campaigns in winter are seen
to systematically yield better model fits. The standard devia-
tion of the residuals is considerably smaller than its counter-
parts associated with models fit to measurement data in
summer. Model fits for both winter and summer experiments
show residual whiteness as soon as two or more states are
considered (models TiTe and TiTeiTea). In the case of the
second-order TiTe models, it is seen that the most suitable
model for the winter and summer experiments differs, even
though the imposed experiments are identical. This clearly
illustrates that, aside from the investigated building and the
imposed experiment (heating power signal @, e.g., PRBS),
the most suitable model depends on the particular weather
conditions (7}, g, etc.) taking place during the experiment.
The latter effectively excite the building in their respective
prevalent frequency components. In order to obtain reliable
and separated parameter estimates, however, a heating power
signal that is uncorrelated with the outside weather conditions,
persistently exciting the building, is required.

Although the summer experiment yields model fits with
lower log-likelihoods than the winter experiment, it is seen to
deliver models that are better able to simulate the KI Test Box
response in other circumstances than over which they were
fitted. Cross-validation clearly shows that the solar gains are
not properly modeled when models are trained on measure-
ment data in January.

Influential weather conditions need to be accounted for in
a suitable way. Taking into account solar radiation, however
significant in the higher-order models, is seen to only
modestly improve the quality of the model fit. The limited
surface area of the KI Test Box window partly serves to
explain this. Additionally, as illustrated by the results for the
winter experiment, the intensity of the solar radiation input
signal will partly determine its significance.

All solar radiation projections could potentially serve as
input to the models. As opposed to model Ti.3, the choice of
the solar radiation projection that serves as input to models
TiTe.2, TiTe.3, TiTeiTea.l, and TiTeiTea.2 becomes less
straightforward. Future research should investigate the possi-
bility to sensibly relate different solar radiation projections to
different thermal nodes considered in the system, or how to

take into account different projections depending on the time
of day.

The KI Test Box was simulated to be perfectly airtight.
Hence, the wind speed and direction are not influential. Their
influence on the convective heat transfer coefficient hence is
negligible, given the fact that the KI Test Box is relatively well
insulated.

It is important to note that all of the models considered in
this paper are linear time-invariant models, whereas the ther-
mal behaviour of the real system is essentially nonlinear, due
to such factors as radiative heat exchange with sky, depen-
dence of thermal resistance of building fabric on temperature,
influence of solar radiation, and dependence of convective
heat transfer coefficients on wind speed and direction. None-
theless, it is seen that good fits are attained and reasonable
characterizations are within reach. This greatly depends,
however, on the thermal performance of the investigated
building, the weather conditions, the imposed experiment, and
its purpose.

NOMENCLATURE

A = shortest time period at which the heating power
(PRBS) shifts from one level to the other, h

= thermal resistance, K/W

= heat capacity, J/(kg'K)

= solar aperture, m>K

absolute temperature, K

= temperature, °C

= power, W

= heat flux, W/m?

= fraction of solar radiation entering 7,
dimensionless

TR g DON AN O X
Il

~
Il

radiative heat transfer coefficient (radiative heat
exchange with sky), W/K

= solar absorption factor, dimensionless
= process noise, K

measurement noise, K

= emissivity, dimensionless

A uw o g @
Il

= time constant, s

Subscripts

i = indoor environment

a = ambient/outdoor environment
= envelope

el = inside of the envelope

ea = outside of the envelope

ground

= 0Q
I

= heating
shortwave

infrared

W =
ir =

convective
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t = transparent

0 = opaque

sky = sky

w = window

* = projection perpendicular to horizontal, north-,
east-, south-, and west-oriented surfaces

k = discrete time step
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